人工智能课题研究方向(人工智能课题研究报告)

机器人技术有哪些主要的研究方向?机器人现在比较有前途的方向不外乎:工业机器人、无人飞行器(uav)、无人驾驶汽车(ugv)、医疗机器人。工业机器人现在需求量越来越大,是个不错的行业,但目前主要做研究的都是公司了,大学里几乎

机器人技术有哪些主要的研究方向?

机器人现在比较有前途的方向不外乎:工业机器人、无人飞行器(uav)、无人驾驶汽车(ugv)、医疗机器人。工业机器人现在需求量越来越大,是个不错的行业,但目前主要做研究的都是公司了,大学里几乎不做了(但大学会用工业机器人做点别的研究,比如抓握研究,就是面对不规则物体时,如何判定形体,如何用机械手准确、稳定地抓握)。uav主要是政府在投钱,军队用。ugv是政府和一些有前瞻性的公司,就目前的技术情况,恐怕十年内无法大规模商业化。医疗机器人是针对目前一些手术上的问题在做,目前有一定进展(达芬奇系统),商业前景很好,但是短期内恐怕推广不开。其他方向,比如家政机器人,有willow

garage在探路,但是前景很不乐观。日本做类人步行机器人做的很欢,但是应用前景极其狭窄(目前来看仅可用于人难以深入的灾难环境操作原本为人设计的设施)。boston

dynamics的四足步行机器人做得不错,但是应用范围过于狭窄,只有军队可能有兴趣采购。sarcos雷神的外骨骼做得不错,有一定商业化前景,但是自重太大,对能源要求很高,成本也很高,。

做机器人,主要有三个层面。

层做机械设计,主要是电机、传感器、人工肌肉、结构设计等等。

中层做控制设计,主要是传感器滤波和控制算法。

上层做感知,主要是根据传感器数据进行更高阶的信息融合,作更复杂的分析,比如说机器视觉、slam之类。

人工智能在机器人领域目前没看出来有什么大用处。甚至连机器学习都用的非常少。三个层面都不错。不过目前发展快的是后两个层面。中层现在在工业界发展比较快。上层主要还是在学术界,目前还没有多少可供商业化的东西。下层现在很缓慢,主要是没有找到非常好的材料。机器人现在比较有前途的方向不外乎:工业机器人、无人飞行器(uav)、无人驾驶汽车(ugv)、医疗机器人。工业机器人现在需求量越来越大,是个不错的行业,但目前主要做研究的都是公司了,大学里几乎不做了(但大学会用工业机器人做点别的研究,比如抓握研究,就是面对不规则物体时,如何判定形体,如何用机械手准确、稳定地抓握)。uav主要是政府在投钱,军队用。ugv是政府和一些有前瞻性的公司,就目前的技术情况,恐怕十年内无法大规模商业化。医疗机器人是针对目前一些手术上的问题在做,目前有一定进展(达芬奇系统),商业前景很好,但是短期内恐怕推广不开。其他方向,比如家政机器人,有willow garage在探路,但是前景很不乐观。日本做类人步行机器人做的很欢,但是应用前景极其狭窄(目前来看仅可用于人难以深入的灾难环境操作原本为人设计的设施)。boston dynamics的四足步行机器人做得不错,但是应用范围过于狭窄,只有军队可能有兴趣采购。sarcos雷神的外骨骼做得不错,有一定商业化前景,但是自重太大,对能源要求很高,成本也很高,。

做机器人,主要有三个层面。

层做机械设计,主要是电机、传感器、人工肌肉、结构设计等等。

中层做控制设计,主要是传感器滤波和控制算法。

上层做感知,主要是根据传感器数据进行更高阶的信息融合,作更复杂的分析,比如说机器视觉、slam之类。

人工智能在机器人领域目前没看出来有什么大用处。甚至连机器学习都用的非常少。三个层面都不错。不过目前发展快的是后两个层面。中层现在在工业界发展比较快。上层主要还是在学术界,目前还没有多少可供商业化的东西。下层现在很缓慢,主要是没有找到非常好的材料。1.机器人控制技术

2.机器人运动规划

3.机器人精度分析与标定

4.仿生机器人等

一般的机器人技术或机器人导论书中的章都有介绍

人工智能课题研究方向

人工智能的研究课题

人工智能的研究方向已经被分成几个子领域,研究人员希望一个人工智能系统应该具有某些特定能力,以下将这些能力列出并说明。 早期的人工智能研究人员直接模仿人类进行逐步的推理,就像是玩棋盘游戏或进行逻辑推理时人类的思考模式。到了1980和1990年代,利用概率和经济学上的概念,人工智能研究还发展了非常成功的方法处理不确定或不完整的资讯。

对于困难的问题,有可能需要大量的运算资源,也就是发生了“可能组合爆增”:当问题超过一定的规模时,电脑会需要天文数量级的存储器或是运算时间。寻找更有效的算法是优先的人工智能研究项目。

人类解决问题的模式通常是用快捷,直观的判断,而不是有意识的,一步一步的推导,早期人工智能研究通常使用逐步推导的方式。人工智能研究已经于这种“次表征性的”解决问题方法取得进展:实体化AGENT研究强调感知运动的重要性。神经网络研究试图以模拟人类和动物的大脑结构重现这种技能。 AN ONTOLOGY REPRESENTS KNOWLEDGE AS A SET OF CONCEPTS WITHIN A DOMAIN AND THE RELATIONSHIPS BETWEEN THOSE CONCEPTS.

主条目:知识表示和常识知识库 主条目:机器学习

机械学习的主要目的是为了从使用者和输入数据等处获得知识,从而可以帮助解决更多问题,减少错误,提高解决问题的效率。对于人工智能来说,机械学习从一开始就很重要。1956年,在初的达特茅斯夏季会议上,雷蒙德索洛莫诺夫写了一篇关于不监视的概率性机械学习:一个归纳推理的机械。 主条目:机器感知、计算机视觉和语音识别

机器感知 是指能够使用传感器所输入的资料(如照相机,麦克风,声纳以及其他的特殊传感器)然后推断世界的状态。计算机视觉能够分析影像输入。另外还有语音识别 、人脸辨识和物体辨识。 主条目:情感计算

KISMET, 一个具有表情等社交能力的机器人

情感和社交技能对于一个智能AGENT是很重要的。 首先,通过了解他们的动机和情感状态,代理人能够预测别人的行动(这涉及要素 博弈论、决策理论以及能够塑造人的情感和情绪感知能力检测)。此外,为了良好的人机互动,智慧代理人也需要表现出情绪来。至少它必须出现礼貌地和人类打交道。至少,它本身应该有正常的情绪。 主条目:计算机创造力

一个人工智能的子领域,代表了理论(从哲学和心理学的角度)和实际(通过特定的实现产生的系统的输出是可以考虑的创意,或系统识别和评估创造力)所定义的创造力。 相关领域研究的包括了人工直觉和人工想像。 (1)人工智能对自然科学的影响。在需要使用数学计算机工具解决问题的学科,AI带来的帮助不言而喻。更重要的是,AI反过来有助于人类终认识自身智能的形成。

(2)人工智能对经济的影响。专家系统更深入各行各业,带来巨大的宏观效益。AI也促进了计算机工业网络工业的发展。但同时,也带来了劳务就业问题。由于AI在科技和工程中的应用,能够代替人类进行各种技术工作和脑力劳动,会造成社会结构的剧烈变化。

(3)人工智能对社会的影响。AI也为人类文化生活提供了新的模式。现有的游戏将逐步发展为更高智能的交互式文化娱乐手段,今天,游戏中的人工智能应用已经深入到各大游戏制造商的开发中。 伴随着人工智能和智能机器人的发展,不得不讨论是人工智能本身就是超前研究,需要用未来的眼光开展现代的科研,因此很可能触及伦理底线。作为科学研究可能涉及到的敏感问题,需要针对可能产生的冲突及早预防,而不是等到问题矛盾到了不可解决的时候才去想办法化解。

温馨提示:

1.本站大部分内容均收集于网络!若内容若侵犯到您的权益,请联系站长处理!

2.如果您喜欢我们,可开通终身会员,享受全站资源免费下载!

3.本站所有内容只做学习和交流使用。 版权归原作者所有。

搜索